학술논문

Enhancing Indoor Robot Pedestrian Detection Using Improved PIXOR Backbone and Gaussian Heatmap Regression in 3D LiDAR Point Clouds
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:9162-9176 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Three-dimensional displays
Pedestrians
Laser radar
Point cloud compression
Object detection
Sensors
Robots
Navigation
Deep learning
Gaussian processes
Robot navigation
pedestrian detection
pedestrian tracking
PIXOR
Gaussian heatmap
point cloud
deep learning
Language
ISSN
2169-3536
Abstract
Accurate and robust pedestrian detection is fundamental for indoor robotic systems to navigate safely and seamlessly alongside humans in spatially constrained, unpredictable indoor environments. This paper presents a novel method, IRBGHR-PIXOR, a detection framework specifically engineered for pedestrian perception in indoor mobile robots. This novel approach employs an enhanced adaptation of the cutting-edge PIXOR model, integrating two pivotal augmentations: a remodeled convolutional backbone leveraging Inverted Residual Blocks (IRB) in unison with Gaussian Heatmap Regression (GHR), as well as a Modified Focal Loss (MFL) function to tackle data imbalance issues. The IRB component notably bolsters the network’s aptitude for processing intricate spatial representations generated from sparse 3D LiDAR scans. Meanwhile, integrating GHR further elevates accuracy by enabling precise localization of pedestrian subjects. This is achieved by modeling the probability distribution and predicting the central location of individuals in the point cloud data. Extensively evaluated on the large-scale JRDB dataset comprising intense scans from 16-beam Velodyne LiDAR sensors, IRBGHR-PIXOR accomplishes exceptional results, attaining 97.17% Average Precision (AP) at the 0.5 IOU threshold. Notably, this level of accuracy is achieved without significantly increasing model complexity. By enhancing algorithms to overcome challenges in confined indoor environments, this research paves the way for safe and effective deployment of autonomous technologies once encumbered by perceptual limitations in human-centered spaces. Nonetheless, evaluating performance in diverse edge cases and integration with complementary sensory cues promise continued progress. The developments contribute towards the vital capacity of reliable dynamic perception for next-generation robotic systems coexisting in human-centric environments.