학술논문

Physical-Layer Cyberattack and Interference Resilient Automotive Radars
Document Type
Periodical
Author
Source
IEEE Access Access, IEEE. 8:215531-215543 2020
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Radar
Sensors
Chirp
Radar detection
Automotive engineering
Radar measurements
Millimeter wave radar
Automotive radars
attack resilience
cybersecurity
interference resilience
physical-layer attacks
Language
ISSN
2169-3536
Abstract
In this paper, we present a physical-layer attack and interference resilient automotive radar system, and derive analytical upper bounds for the probability of not detecting an attack, and the probability of false attack alarm. We consider a quite general attack model and prove that if the attack signal level is above a defined relative threshold, both the probability of false attack alarm and the probability of not detecting an attack converge to zero exponentially with the number of samples acquired during a single chirp, and the number of chirps used in a frame. We also derive an analytical formula for this relative threshold, and prove that by selecting shorter frame durations, and using lower noise RF equipment, the threshold can be made as small as possible. Basically, by proper selection of radar parameters arbitrarily small attack signals can be detected almost always with almost no false alarms. We also present a numerical example using real measured data obtained from two 77 GHz automotive radars operated at the same time. Also using real data, we show that the proposed system reduces the negative effects of undetected weak attacks which are below the above mentioned threshold.