학술논문

Distilling Neural Fields for Real-Time Articulated Shape Reconstruction
Document Type
Conference
Source
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) CVPR Computer Vision and Pattern Recognition (CVPR), 2023 IEEE/CVF Conference on. :4692-4701 Jun, 2023
Subject
Computing and Processing
Training
Three-dimensional displays
Shape
Training data
Turning
Real-time systems
Task analysis
3D from single images
Language
ISSN
2575-7075
Abstract
We present a method for reconstructing articulated 3D models from videos in real-time, without test-time optimization or manual 3D supervision at training time. Prior work often relies on pre-built deformable models (e.g. SMAL/SMPL), or slow perscene optimization through differentiable rendering (e.g. dynamic NeRFs). Such methods fail to support arbitrary object categories, or are unsuitable for real-time applications. To address the challenge of collecting large-scale 3D training data for arbitrary deformable object categories, our key insight is to use off-the-shelf video-based dynamic NeRFs as 3D supervision to train a fast feed-forward network, turning 3D shape and motion prediction into a supervised distillation task. Our temporal-aware network uses articulated bones and blend skinning to represent arbitrary deformations, and is self-supervised on video datasets without requiring 3D shapes or viewpoints as input. Through distillation, our network learns to 3D-reconstruct unseen articulated objects at interactive frame rates. Our method yields higher-fidelity 3D reconstructions than prior real-time methods for animals, with the ability to render realistic images at novel viewpoints and poses.