학술논문

Statistical shape model of vessel centerline for endovascular paths comparison in mechanical thrombectomy
Document Type
Conference
Source
2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) Engineering in Medicine & Biology Society (EMBC), 2021 43rd Annual International Conference of the IEEE. :1765-1769 Nov, 2021
Subject
Bioengineering
Three-dimensional displays
Navigation
Shape
Computational modeling
Catheterization
Magnetic resonance
Euclidean distance
Language
ISSN
2694-0604
Abstract
Endovascular interventions are experiencing an important development. Despite many advantages of this type of intervention, catheter navigation is still a cause of difficulties or failure. Mechanical thrombectomy is one of these interventions where navigation difficulties are related to the ability to navigate the aortic arch and access the carotid. These difficulties are due to the selection of adequate catheters and guides for a specific anatomy and to the technical gesture to operate. The objective of this work is to propose a method to find similar endovascular navigation paths from pre-existing patients to support intervention in mechanical thrombectomy. For each patient, iso-centerlines of the aortic arch and supra-aortic trunks are extracted from pre-operative magnetic resonance angiography volume. A statistical shape model is computed from these vascular structure iso-centerlines. Euclidean distance between vectors of statistical shape model modes is used to compare endovascular navigation paths. A set of 6 patient cases was used to compute the statistical shape model. For validation, an additional set of 5 patient cases was considered to generate new iso-centerlines.Retrieval of closest iso-centerlines were correct in more than 95% of cases with the proposed method while this percentage goes down to 43% with Euclidean distance between 3D points of iso-centerlines.Clinical relevance—The presented method allows physicians to retrieve past navigation paths similar to a new one. Used in planning, this could allow to anticipate navigation difficulties in mechanical thrombectomy