학술논문

300-Meter Long-Range Optical Camera Communication on RGB-LED-Equipped Drone and Object-Detecting Camera
Document Type
Periodical
Source
IEEE Access Access, IEEE. 10:55073-55080 2022
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Cameras
Drones
Light emitting diodes
Encoding
Optical transmitters
Crosstalk
Ultrafast optics
Optical camera communication
visible light communication
unmanned aerial vehicle
disaster recovery
Language
ISSN
2169-3536
Abstract
Large-scale disaster occurs all over the world frequently, disconnects telecommunications, and destroys communication equipment. In recent years, unmanned aerial vehicles (UAVs) network systems have been studied to work on the reconstruction activities safely and flexibly. The more means of telecommunication, the better because the UAV networks are used for emergency communication. Therefore, this paper studies optical camera communication (OCC) systems using RGB-LED-mounted drones and a high-speed camera for disaster recovery and proposes the RGB-LED-mounted drone’s detection scheme and the signal equalization technique to suppress the RGB interference. We detect the drone using the algorithm of a deep neural network (DNN) based object detection called YOLOv3. This paper adds a new function to reduce the frame rate in object detection. Consequently, the proposed scheme reduces the frame rate to a rate that can conduct real-time operations less than 20 fps from 600 fps. Moreover, the experimental results indicate the feasibility of the proposed scheme that can communicate in error-free operation at a 300-m distance.