학술논문

Resource-Efficient Transfer Learning from Speech Foundation Model Using Hierarchical Feature Fusion
Document Type
Conference
Source
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) Acoustics, Speech and Signal Processing (ICASSP), ICASSP 2023 - 2023 IEEE International Conference on. :1-5 Jun, 2023
Subject
Bioengineering
Communication, Networking and Broadcast Technologies
Computing and Processing
Signal Processing and Analysis
Training
Adaptation models
Analytical models
Costs
Computational modeling
Transfer learning
Memory management
speech recognition
foundation model
transfer learning
Language
ISSN
2379-190X
Abstract
Self-supervised pre-training of a speech foundation model, followed by supervised fine-tuning, has shown impressive quality improvements on automatic speech recognition (ASR) tasks. Fine-tuning separate foundation models for many downstream tasks are expensive since the foundation model is usually very big. Parameter-efficient fine-tuning methods (e.g. adapter, sparse update methods) offer an alternative paradigm where a small set of parameters are updated to adapt the foundation model to new tasks. However, these methods still suffer from a high computational memory cost and slow training speed because they require backpropagation through the entire neural network at each step. In the paper, we analyze the performance of features at different layers of a foundation model on the speech recognition task and propose a novel hierarchical feature fusion method for resource-efficient transfer learning from speech foundation models. Experimental results show that the proposed method can achieve better performance on speech recognition task than existing algorithms with fewer number of trainable parameters, less computational memory cost and faster training speed. After combining with Adapters at all layers, the proposed method can achieve the same performance as fine-tuning the whole model with 97% fewer trainable encoder parameters and 53% faster training speed.