학술논문

DQN Approach for Adaptive Self-Healing of VNFs in Cloud-Native Network
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:34489-34504 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Cloud computing
Automation
Artificial intelligence
Optimization
Real-time systems
Quality of service
Next generation networking
Queueing analysis
Intelligent systems
Network function virtualization
Deep reinforcement learning
Self-healing VNF
deep queue networks
operational automation
cloud-native deployment
ONAP
network intelligence
Language
ISSN
2169-3536
Abstract
The transformation from physical network function to Virtual Network Function (VNF) requires a fundamental design change in how applications and services are tested and assured in a hybrid virtual network. Once the VNFs are onboarded in a cloud network infrastructure, operators need to test VNFs in real-time at the time of instantiation automatically. This paper explicitly analyses the problem of adaptive self-healing of a Virtual Machine (VM) allocated by the VNF with the Deep Reinforcement Learning (DRL) approach. The DRL-based big data collection and analytics engine performs aggregation to probe and analyze data for troubleshooting and performance management. This engine helps to determine corrective actions (self-healing), such as scaling or migrating VNFs. Hence, we proposed a Deep Queue Learning (DQL) based Deep Queue Networks (DQN) mechanism for self-healing VNFs in the virtualized infrastructure manager. Virtual network probes of closed-loop orchestration perform the automation of the VNF and provide analytics for real-time, policy-driven orchestration in an open networking automation platform through the stochastic gradient descent method for VNF service assurance and network reliability. The proposed DQN/DDQN mechanism optimizes the price and lowers the cost by 18% for resource usage without disrupting the Quality of Service (QoS) provided by the VNF. The outcome of adaptive self-healing of the VNFs enhances the computational performance by 27% compared to other state-of-the-art algorithms.