학술논문

Deep Learning Using Preoperative Optical Coherence Tomography Images to Predict Visual Acuity Following Surgery for Idiopathic Full-Thickness Macular Holes
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:32911-32926 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Predictive models
Visualization
Three-dimensional displays
Solid modeling
Informatics
Deep learning
Retina
Image analysis
Machine learning
Optical coherence tomography
Visual analytics
machine learning
optical coherence tomography
visual acuity measurement
Language
ISSN
2169-3536
Abstract
This study presents a fully automated image informatics framework. The framework is combined with a deep learning (DL) approach to automatically predict visual acuity outcomes for people undergoing surgery for idiopathic full-thickness macular holes using 3D spectral-domain optical coherence tomography (SD-OCT) images. To overcome the impact of high variation in real-world image quality on the robustness of DL models, comprehensive imaging data pre-processing, quality assurance, and anomaly detection procedures were utilised. We then implemented, trained, and tested nine state-of-the-art DL predictive models through our designed loss function with multiple 2D input channels on the imaging dataset. Finally, we quantitatively compared the models using four evaluation metrics. Overall, the predictive model achieved a MAE of 6.47 ETDRS letters score, demonstrating high predictability. This confirms that our fully automated approach with input from seven central SD-OCT images from each patient can robustly predict visual acuity measurements. Further research will focus on adapting 3D DL-based predictive models and the uncertainty of 2D and 3D DL-based predictive models.