학술논문

A Quantitative Logarithmic Transformation-Based Intrusion Detection System
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:20351-20364 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Passwords
Intrusion detection
IP networks
Aggregates
Network security
Telecommunication traffic
Servers
NIDS
NetFlow
network security
Language
ISSN
2169-3536
Abstract
Intrusion detection systems (IDS) play a vital role in protecting networks from malicious attacks. Modern IDS use machine-learning or deep-learning models to deal with the diversity of attacks that malicious users may employ. However, effective machine-learning methods incur a considerable cost in both the pretraining stage and the online detection process itself. Accordingly, this study proposes a quantitative logarithmic transformation-based intrusion detection system (QLT-IDS) that uses a straightforward statistical approach to analyze network behavior. Compared with machine-learning or deep-learning-based IDS methods, the proposed system requires neither a time-consuming and expensive data collection and training process, nor a GPU-included device to achieve a real-time detection performance. Furthermore, the system can deal not only with North-South attacks, but also East-West attacks, which pose a significant risk in real-world operations. The effectiveness of the proposed system is evaluated for both real-world campus network traffic and simulated traffic. The results confirm that QLT-IDS is able to detect a wide range of malicious attacks with a high precision, even under high down-sampling rate of the NetFlow records.