학술논문

Physics-Based Digital Twins Merging With Machines: Cases of Mobile Log Crane and Rotating Machine
Document Type
Periodical
Source
IEEE Access Access, IEEE. 10:45962-45978 2022
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Kalman filters
Finite element analysis
Computational modeling
Real-time systems
Mathematical models
Digital twin
Predictive models
Multibody simulation
finite element method
Kalman filter
state estimation
parameter estimation
physics-based simulation
Language
ISSN
2169-3536
Abstract
Real-world products and physics-based simulations are becoming interconnected. In particular, real-time capable dynamic simulation has made it possible for simulation models to run in parallel and simultaneously with operating machinery. This capability combined with state observer techniques such as Kalman filtering have enabled the synchronization between simulation and the real world. State estimator techniques can be applied to estimate unmeasured quantities, also referred as virtual sensing, or to enhance the quality of measured signals. Although synchronized models could be used in a number of ways, value creation and business model development are currently defining the most practical and beneficial use cases from a business perspective. The research reported here reveals the communication and collaboration methods that lead to economically relevant technology solutions. Two case examples are given that demonstrate the proposed methodology. The work benefited from the broad perspective of researchers from different backgrounds and the joint effort to drive the technology development towards business relevant cases.