학술논문

Disentangled Representation Learning for OCTA Vessel Segmentation With Limited Training Data
Document Type
Periodical
Source
IEEE Transactions on Medical Imaging IEEE Trans. Med. Imaging Medical Imaging, IEEE Transactions on. 41(12):3686-3698 Dec, 2022
Subject
Bioengineering
Computing and Processing
Image segmentation
Manuals
Training
Decoding
Faces
Three-dimensional displays
Image reconstruction
Angiography
OCT
OCTA
variational autoencoder
vessel segmentation
Language
ISSN
0278-0062
1558-254X
Abstract
Optical coherence tomography angiography (OCTA) is an imaging modality that can be used for analyzing retinal vasculature. Quantitative assessment of en face OCTA images requires accurate segmentation of the capillaries. Using deep learning approaches for this task faces two major challenges. First, acquiring sufficient manual delineations for training can take hundreds of hours. Second, OCTA images suffer from numerous contrast-related artifacts that are currently inherent to the modality and vary dramatically across scanners. We propose to solve both problems by learning a disentanglement of an anatomy component and a local contrast component from paired OCTA scans. With the contrast removed from the anatomy component, a deep learning model that takes the anatomy component as input can learn to segment vessels with a limited portion of the training images being manually labeled. Our method demonstrates state-of-the-art performance for OCTA vessel segmentation.