학술논문

Impacts of Community Energy Trading on Low Voltage Distribution Networks
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:50412-50430 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Mathematical models
Loading
Load flow
Distribution networks
Costs
Voltage control
Transformers
Electricity supply industry
Energy management
Power distribution
Transactive energy
Energy storage
Electric vehicles
Local electricity market
energy community trading
energy community
transactive energy
distributed energy resources
electric vehicle
energy storage
Language
ISSN
2169-3536
Abstract
The wide spread of distributed energy resources (DERs) enabled the transformation of the passive consumer to an active prosumer. One of the promising approaches for optimal management of DERs and maximizing benefits for the community and prosumers is community energy trading (CET). CET gives the prosumers the flexibility and freedom to trade electricity within the neighborhood and maximize their economic benefits besides maximizing local consumption of renewable energy sources generation. Despite the economic benefits of CET for individuals and the whole community, it could cause impacts on the low voltage distribution network (LVDN). Therefore, there is a need for a comprehensive evaluation of the potential impacts of CET on LVDN. This study compared CET with the home energy management system (HEMS) regarding community operation costs and interaction with the retailer. Furthermore, this paper focused on assessing the impacts of CET between prosumers on the phase unbalance of LVDN. Moreover, the impacts on transformer loading, lines loading, and voltage deviations are assessed. Compared to the corresponding HEMS scenarios, the results demonstrate that CET reduces the community electricity cost by up to 31%. CET resulted in better self-consumption by reducing the exports to the retailer by 93% and better self-sufficiency by covering up to 54% of energy demand by community DERs. However, CET resulted in increasing the community peak demand, accordingly, higher impacts on the LVDN. The transformer is lightly loaded in all scenarios. CET resulted in limit violations in some lines, whereas most are lightly loaded. The voltage magnitude and voltage unbalance exceeded the acceptable limits at some nodes of the LVDN.