학술논문

Thermal-Induced Multi-State Memristors for Neuromorphic Engineering
Document Type
Conference
Source
2023 IEEE International Symposium on Circuits and Systems (ISCAS) Circuits and Systems (ISCAS), 2023 IEEE International Symposium on. :1-5 May, 2023
Subject
Components, Circuits, Devices and Systems
Power, Energy and Industry Applications
Signal Processing and Analysis
Power demand
Neuromorphic engineering
Thermal engineering
Neurons
Memristors
Energy efficiency
Internet of Things
memristors
resistive RAM
neuromorphics
neuromorphic computing
Language
ISSN
2158-1525
Abstract
With the rapidly evolving internet of things (IoT) era, the ever-rising demand for data transfer and storage has put a knotty problem on conventional computers, known as the von Neumann bottleneck and memory wall problem. Slow scaling of CMOS transistors due to physical and economical limitations further exacerbates the situation. It is only logical to mimic what has been known so far as the most energy-efficient system, the human brain. The brain-inspired neuromorphic computing systems compute and store the data locally, which dramatically reduces area and energy consumption. In this work, we demonstrate thermal-induced multi-state memristors for neuromorphic engineering applications. We show that in a neural network that uses a memristor-spintronic nano oscillator connection to implement the synapse-neuron pair, with increased temperature, the total power consumption could be reduced by more than 50 % without degrading the output power of a spintronic-based neuron.