학술논문

Precision Clinical Medicine Through Machine Learning: Using High and Low Quantile Ranges of Vital Signs for Risk Stratification of ICU Patients
Document Type
Periodical
Source
IEEE Access Access, IEEE. 10:52418-52430 2022
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Predictive models
Hospitals
MIMICs
Databases
Prediction algorithms
Feature extraction
Patient monitoring
Precision medicine
artificial intelligence
ICU patient monitoring
prediction models
biomedical informatics
Language
ISSN
2169-3536
Abstract
Remote monitoring of patients in the intensive care unit (ICU) is a crucial observation and assessment task that is necessary for precision medicine. We have recently built a cloud-based intelligent remote patient monitoring (IRPM) framework in which we follow the state-of-the-art in risk stratification through machine learning-based prediction, but with minimal features that rely on vital signs, the most commonly used physiological variables obtained inside and outside hospitals. In this work, we significantly improve the functionality of the initial IRPM framework by building three machine learning models for readmission, abnormality, and next-day vital sign measurements. We provide a formal representation of a feature engineering algorithm and report the development and validation of three reproducible machine learning prediction models: ICU patient readmission, abnormality, and next-day vital sign measurements. For the readmission model, we proposed two solutions for data with imbalanced classes and applied five binary classification algorithms to each solution. For the abnormality model, we applied the same five algorithms to predict whether a patient will show abnormal health conditions. Our findings indicate that we can still achieve a reasonable performance using these machine learning models by focusing on low and high quantile ranges of vital signs. The best accuracy achieved in the readmission model was around 67.53%, with an area under the receiver operating characteristic (AUROC) of 0.7376. The highest accuracy achieved in the abnormality model was around 67.40%, with an AUROC of 0.7379. For the next-day vital sign measurements model, we provide three approaches for selecting model predictors and apply the eXtreme Gradient Boosting (XGB) and Random Forest Regression (RFR) algorithms to each solution. We found that, in general, the use of the most recent vital sign measurements achieves the least prediction error. Considering the large investment from the medical industry in patient monitoring devices, the developed models will be incorporated into an Intelligent ICU Patient Monitoring (IICUPM) module that can potentially facilitate the delivery of high quality care by implementing cost-efficient policies for handling the patients who utilize ICU resources the most.