학술논문

Protecting Intellectual Property With Reliable Availability of Learning Models in AI-Based Cybersecurity Services
Document Type
Periodical
Source
IEEE Transactions on Dependable and Secure Computing IEEE Trans. Dependable and Secure Comput. Dependable and Secure Computing, IEEE Transactions on. 21(2):600-617 Apr, 2024
Subject
Computing and Processing
Predictive models
Biological system modeling
Computational modeling
Watermarking
Data models
Computer security
Intellectual property
AI-based cybersecurity services
data poisioning-based model manipulation
intellectual property
model locking
reliable availability
Language
ISSN
1545-5971
1941-0018
2160-9209
Abstract
Artificial intelligence (AI)-based cybersecurity services offer significant promise in many scenarios, including malware detection, content supervision, and so on. Meanwhile, many commercial and government applications have raised the need for intellectual property protection of using deep neural network (DNN). Existing studies (e.g., watermarking techniques) on intellectual property protection only aim at inserting secret information into DNNs, allowing producers to detect whether the given DNN infringes on their own copyrights. However, since the availability protection of learning models is rarely considered, the piracy model can still work with high accuracy. In this paper, a novel model locking (M-LOCK) scheme for the DNN is proposed to enhance its availability protection, where the DNN produces poor accuracy if a specific token is absent, while it maps only the tokenized inputs into correct predictions. The proposed scheme performs the verification process during the DNN inference operation, actively protecting models’ intellectual property copyright at each query. Specifically, to train the token-sensitive decision-making boundaries of DNNs, a data poisoning-based model manipulation (DPMM) method is also proposed, which minimizes the correlation between the dummy outputs and correct predictions. Extensive experiments demonstrate the proposed scheme could achieve high reliability and effectiveness across various benchmark datasets as well as typical model protection methods.