학술논문

Using UncertainSCI to Quantify Uncertainty in Cardiac Simulations
Document Type
Conference
Source
2020 Computing in Cardiology Computing in Cardiology, 2020. :1-4 Sep, 2020
Subject
Bioengineering
Computing and Processing
Torso
Uncertain systems
Uncertainty
Sensitivity
Computational modeling
Biological system modeling
Stochastic processes
Language
ISSN
2325-887X
Abstract
Cardiac simulations have become increasingly accurate at representing physiological processes. However, simulations often fail to capture the impact of parameter uncertainty in predictions. Uncertainty quantification (UQ) is a set of techniques that captures variability in simulation output based on model assumptions. Although many UQ methods exist, practical implementation can be challenging. We created UncertainSCI, a UQ framework that uses polynomial chaos (PC) expansion to model the forward stochastic error in simulations parameterized with random variables. UncertainSCI uses non-intrusive methods that parsimoniously explores parameter space. The result is an efficient, stable, and accurate PC emulator that can be analyzed to compute output statistics. We created a Python API to run UncertainSCI, minimizing user inputs needed to guide the UQ process. We have implemented UncertainSCI to: (1) quantify the sensitivity of computed torso potentials using the boundary element method to uncertainty in the heart position, and (2) quantify the sensitivity of computed torso potentials using the finite element method to uncertainty in the conductivities of biological tissues. With UncertainSCI, it is possible to evaluate the robustness of simulations to parameter uncertainty and establish realistic expectations on the accuracy of the model results and the clinical guidance they can provide.