학술논문

A Flexible Communication Protocol With Guaranteed Determinism for Distributed, Safety-Critical Real-Time Systems
Document Type
Periodical
Source
IEEE Access Access, IEEE. 10:48049-48070 2022
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Protocols
Fault tolerant systems
Fault tolerance
Time division multiple access
Real-time systems
Bandwidth
Videos
Event-triggered communication
fault tolerance
flexibility
in-vehicle networks
real-time communication
safety-critical systems
time sensitive networking
time-triggered communication
Language
ISSN
2169-3536
Abstract
Dependable, safety-critical real-time (SCRT) systems are becoming increasingly important and complex. Examples of such systems are autonomous or self-driving cars which are poised to revolutionise the transport industry. A critical part of these SCRT systems is the network communication protocol that is used by components in an SCRT system to exchange data. Communication protocols for SCRT systems are required to exhibit predictable, worst-case execution times and thus have to be designed in a more static and less flexible way. To ensure this predictability, current state-of-art communication protocols for SCRT systems are based on the Time-Triggered Architecture (TTA), where static and equal-length time-slots are used for all nodes to access the communication channel, irrespective of the size of their transmission payload. This determinism forms the basis of predictable timing, behaviour and fault tolerance. However, this determinism comes at the cost of poor channel and bandwidth utilisation, which hinders the development of SCRT systems. In this paper, we propose a more flexible approach, INCUS+, that allocates the slot length of a node based on its transmission requirements in a Time Division Multiple Access (TDMA) round. We achieve this while retaining the level of dependability required for SCRT systems and ensuring fail-silence. We validate this through formal verification of the timing parameters for the transmission windows of all participating nodes as well as independent bus guardians. Our design exhibits a significant improvement in bandwidth and channel utilisation, as we demonstrate in an autonomous vehicle case study.