학술논문

Comparison of Single-Event Transients in SiGe HBTs on Bulk and Thick-Film SOI
Document Type
Periodical
Source
IEEE Transactions on Nuclear Science IEEE Trans. Nucl. Sci. Nuclear Science, IEEE Transactions on. 67(1):71-80 Jan, 2020
Subject
Nuclear Engineering
Bioengineering
Silicon germanium
Substrates
Testing
Ions
Transient analysis
Metals
Silicon
Heavy-ion testing
radiation hardening techniques
radiation hardness assurance
silicon–germanium heterojunction bipolar transistor (SiGe HBT)
silicon-on-insulator (SOI)
single-event transient (SET)
two-photon absorption (TPA) laser testing
Language
ISSN
0018-9499
1558-1578
Abstract
A comparison of heavy-ion-induced single-event transients (SETs) in silicon–germanium heterojunction bipolar transistors (SiGe HBTs) fabricated on both bulk and silicon-on-insulator (SOI) substrates is presented. Experimental heavy-ion data show a reduction of sensitive volume of $\approx 350\times $ for the SiGe HBTs fabricated on SOI compared to those on a bulk substrate. Furthermore, the results indicate that the sensitive volume of the SOI SiGe HBTs is confined to the intrinsic device. These results have been confirmed using pulsed laser data and TCAD simulations. Limiting the charge collection depth of SiGe HBTs by fabricating them on SOI facilitates correlation of ion and laser results. The improved ease of correlation is a result of suppressing diffusive charge collection mechanisms that are difficult to replicate with the charge deposition profile generated by two-photon absorption using a tightly focused laser beam. However, a potential issue with pulsed laser testing is determining the loss of the pulse energy through the buried oxide, which requires detailed knowledge of the semiconductor platform. Overall, the reduction of sensitive volume for the SOI SiGe HBTs compared to those on a bulk substrate is a clear advantage from a single-event upset vulnerability perspective.