학술논문

Wrapper-Based Feature Selection to Classify Flatfoot Disease
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:22433-22447 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Foot
Metaheuristics
Classification algorithms
Feature extraction
Diseases
Indexes
Prediction algorithms
Accuracy
Feature detection
classification
feature selection
flatfoot disease
metaheuristics
wrapper method
Language
ISSN
2169-3536
Abstract
Musculoskeletal disorders of the foot are a common complaint in the population. It has been found a flatfoot prevalence of 13.6% in young adults and a prevalence of 26.62% in adults between 42 and 91 years. Different non-invasive techniques can identify the type of foot by analyzing the soles of the feet, such as the Chippaux-Smirak index (CSI). Although CSI is a non-invasive technique, it is performed manually, and the intervention of an expert is necessary to give a clinical opinion. The use of automatic systems is an alternative. This article introduces a machine learning-based tool that permits the identification of foot types. The proposal employs a wrapper feature selection mechanism to select the subset of features that improves the classification. This task is considered from an optimization perspective, and the optimal subset is chosen using metaheuristic algorithms. Eight algorithms used in the optimization are compared, and an increase in the Accuracy of the K-nearest neighbors (KNN) classifier is observed from 73.5% to 94.7%. Of the 39 total features proposed in the dataset, only 10 features are considered significant. The significance of the characteristics implies that they have an effect on the morphology of the foot. If they are considered in treatments to minimize this disease, it can reduce their development costs.