학술논문

The Lunar Polar Hydrogen Mapper CubeSat Mission
Document Type
Periodical
Source
IEEE Aerospace and Electronic Systems Magazine IEEE Aerosp. Electron. Syst. Mag. Aerospace and Electronic Systems Magazine, IEEE. 35(3):54-69 Mar, 2020
Subject
Aerospace
Transportation
Language
ISSN
0885-8985
1557-959X
Abstract
The Lunar Polar Hydrogen Mapper (LunaH-Map) mission will map the distribution of hydrogen around the lunar South Pole using a miniature neutron spectrometer. The mission builds upon a decade of lunar science, which has revealed both regional and more localized enrichments of water ice near the lunar poles. Localized enrichments are primarily within permanently shadowed regions (PSRs) and craters throughout the South Pole. The spatial extent of these regions is often below the resolution of previous neutron instruments that have flown on lunar missions. The neutron leakage spectrum from planetary surfaces is primarily sensitive to hydrogen abundance in the top meter of regolith, however, for neutron spectrometers with omnidirectional sensitivity, the spatial resolution is limited by the spacecraft orbital altitude above the surface. A low altitude measurement from a distance on the same scale of the PSRs could spatially isolate and constrain the hydrogen enrichments both within and around within those regions. A small spacecraft mission is ideally suited to acquire the low-altitude measurements required to localize hydrogen enrichments using neutron spectroscopy at the lunar South Pole. LunaH-Map will use a solid iodine ion propulsion system, X-Band radio communications through the NASA Deep Space Network, star tracker, Command & Data Handling System, and EPS systems from Blue Canyon Technologies, solar arrays from MMA Designs, LLC, mission design and navigation by KinetX. Spacecraft systems design, integration, qualification, test, and mission operations are performed by Arizona State University, AZ Space Technologies and Qwaltec.