학술논문

PiCO+: Contrastive Label Disambiguation for Robust Partial Label Learning
Document Type
Periodical
Source
IEEE Transactions on Pattern Analysis and Machine Intelligence IEEE Trans. Pattern Anal. Mach. Intell. Pattern Analysis and Machine Intelligence, IEEE Transactions on. 46(5):3183-3198 May, 2024
Subject
Computing and Processing
Bioengineering
Phase locked loops
Noise measurement
Training
Standards
Robustness
Classification algorithms
Task analysis
Contrastive learning
noisy label learning
partial label learning
prototype-based disambiguation
Language
ISSN
0162-8828
2160-9292
1939-3539
Abstract
Partial label learning (PLL) is an important problem that allows each training example to be labeled with a coarse candidate set with the ground-truth label included. However, in a more practical but challenging scenario, the annotator may miss the ground-truth and provide a wrong candidate set, which is known as the noisy PLL problem. To remedy this problem, we propose the PiCO+ framework that simultaneously disambiguates the candidate sets and mitigates label noise. Core to PiCO+, we develop a novel label disambiguation algorithm PiCO that consists of a contrastive learning module along with a novel class prototype-based disambiguation method. Theoretically, we show that these two components are mutually beneficial, and can be rigorously justified from an expectation-maximization (EM) algorithm perspective. To handle label noise, we extend PiCO to PiCO+, which further performs distance-based clean sample selection, and learns robust classifiers by a semi-supervised contrastive learning algorithm. Beyond this, we further investigate the robustness of PiCO+ in the context of out-of-distribution noise and incorporate a novel energy-based rejection method for improved robustness. Extensive experiments demonstrate that our proposed methods significantly outperform the current state-of-the-art approaches in standard and noisy PLL tasks and even achieve comparable results to fully supervised learning.