학술논문

A Secure and Privacy-Preserving E-Government Framework Using Blockchain and Artificial Immunity
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:8773-8789 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Blockchains
Electronic government
Business
Privacy
Peer-to-peer computing
Artificial intelligence
Artificial immune systems
E-Government
blockchain
artificial immune system
insider threat
privacy-preserving
Language
ISSN
2169-3536
Abstract
Electronic Government (e-Government) systems constantly provide greater services to people, businesses, organisations, and societies by offering more information, opportunities, and platforms with the support of advances in information and communications technologies. This usually results in increased system complexity and sensitivity, necessitating stricter security and privacy-protection measures. The majority of the existing e-Government systems are centralised, making them vulnerable to privacy and security threats, in addition to suffering from a single point of failure. This study proposes a decentralised e-Government framework with integrated threat detection features to address the aforementioned challenges. In particular, the privacy and security of the proposed e-Government system are realised by the encryption, validation, and immutable mechanisms provided by Blockchain. The insider and external threats associated with blockchain transactions are minimised by the employment of an artificial immune system, which effectively protects the integrity of the Blockchain. The proposed e-Government system was validated and evaluated by using the framework of Ethereum Visualisations of Interactive, Blockchain, Extended Simulations (i.e. eVIBES simulator) with two publicly available datasets. The experimental results show the efficacy of the proposed framework in that it can mitigate insider and external threats in e-Government systems whilst simultaneously preserving the privacy of information.