학술논문

Fine Tuning of On-Board Traction Converters for High-Speed Electric Multiple Units at Depot
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:22479-22489 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Capacitors
Voltage control
Rail transportation
PI control
Transportation
Optimization
Rectifiers
High-speed rail transportation
Metaheuristics
DC-link capacitor
electric multiple units
high speed railways
meta-heuristics algorithms
Language
ISSN
2169-3536
Abstract
This article presents a meticulous exploration of on-board traction converters deployed in Electric Multiple Units (EMUs). The study involves the development of a comprehensive traction converter and control system, encompassing essential elements such as transformers, front-end rectifiers, and DC link capacitors. The precise control of the front-end rectifier’s switching states is crucial for achieving high-quality power. A new application of the advanced Hybrid Particle Swarm Optimization (Hybrid PSOS) technique for the optimization of controller parameters is presented. This parameter tuning process aims to minimize the integral time absolute error (ITAE), a critical metric governing the regulation of DC-link capacitor voltage. Simulation results showcase the impressive attributes of on-board traction converters, including low harmonic content, a high-power factor, and stable DC voltage. Additionally, a rigorous comparative analysis is conducted between Hybrid PSOS and other established algorithms like Symbiotic Organisms Search (SOS) and Particle Swarm Optimization (PSO). Hybrid PSOS traction unit outperforms SOS and PSO, with a minimal overshoot of 1.3401%, faster settling time of 0.2413 seconds, compared to SOS (0.3884 seconds) and PSO (0.5531 seconds). Total Harmonic Distortion (THD) for secondary line currents, the values are 12.48% for PSO, 2.17% for SOS, and 1.08% for Hybrid PSOS. Hybrid PSOS consistently demonstrates its superiority, significantly enhancing system performance and stability. This research underscores the substantial potential of on-board traction converters, emphasizing their role in facilitating efficient and stable electric multiple unit (EMU) operations.