학술논문

Sensor Fusion for Autonomous Indoor UAV Navigation in Confined Spaces
Document Type
Conference
Source
2023 16th International Conference on Sensing Technology (ICST) Sensing Technology (ICST), 2023 16th International Conference on. :1-6 Dec, 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Meters
Laser radar
Navigation
Sensor fusion
Inspection
Autonomous aerial vehicles
Robustness
Autonomous UAV Navigation
Multi-Sensor Fusion
SLAM
Deep Learning
Indoor Mapping
Language
Abstract
In this paper, we address the challenge of navigating through unknown indoor environments using autonomous aerial robots within confined spaces. The core of our system involves the integration of key sensor technologies, including depth sensing from the ZED 2i camera, IMU data, and LiDAR measurements, facilitated by the Robot Operating System (ROS) and RTAB-Map. Through custom designed experiments, we demonstrate the robustness and effectiveness of this approach. Our results showcase a promising navigation accuracy, with errors as low as 0.4 meters, and mapping quality characterized by a Root Mean Square Error (RMSE) of just 0.13 m. Notably, this performance is achieved while maintaining energy efficiency and balanced resource allocation, addressing a crucial concern in UAV applications. Flight tests further underscore the precision of our system in maintaining desired flight orientations, with a remarkable error rate of only 0.1%. This work represents a significant stride in the development of autonomous indoor UAV navigation systems, with potential applications in search and rescue, facility inspection, and environmental monitoring within GPS-denied indoor environments.