학술논문

Deep Transfer Learning for Chronic Obstructive Pulmonary Disease Detection Utilizing Electrocardiogram Signals
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:40629-40644 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Electrocardiography
Heart
Feature extraction
Transfer learning
Deep learning
Neurons
Lung
Biomedical signal processing
Wavelet transforms
Biomedical signal analysis
chronic obstructive pulmonary disease
deep transfer learning
ECG signal classification
stockwell transform
wavelet transform
Language
ISSN
2169-3536
Abstract
The motivation of this research is to introduce the first research on automated Chronic Obstructive Pulmonary Disease (COPD) diagnosis using deep learning and the first annotated dataset in this field. The primary objective and contribution of this research is the development and design of an artificial intelligence system capable of diagnosing COPD utilizing only the heart signal (electrocardiogram, ECG) of the patient. In contrast to the traditional way of diagnosing COPD, which requires spirometer tests and a laborious workup in a hospital setting, the proposed system uses the classification capabilities of deep transfer learning and the patient’s heart signal, which provides COPD signs in itself and can be received from any modern smart device. Since the disease progresses slowly and conceals itself until the final stage, hospital visits for diagnosis are uncommon. Hence, the medical goal of this research is to detect COPD using a simple heart signal before it becomes incurable. Deep transfer learning frameworks, which were previously trained on a general image data set, are transferred to carry out an automatic diagnosis of COPD by classifying patients’ electrocardiogram signal equivalents, which are produced by signal-to-image transform techniques. Xception, VGG-19, InceptionResNetV2, DenseNet-121, and “trained-from-scratch” convolutional neural network architectures have been investigated for the detection of COPD, and it is demonstrated that they are able to obtain high performance rates in classifying nearly 33.000 instances using diverse training strategies. The highest classification rate was obtained by the Xception model at 99%. This research shows that the newly introduced COPD detection approach is effective, easily applicable, and eliminates the burden of considerable effort in a hospital. It could also be put into practice and serve as a diagnostic aid for chest disease experts by providing a deeper and faster interpretation of ECG signals. Using the knowledge gained while identifying COPD from ECG signals may aid in the early diagnosis of future diseases for which little data is currently available.