학술논문

Variability of Vertical Total Electron Content Gradients in the Brazilian Sector
Document Type
Periodical
Source
IEEE Transactions on Aerospace and Electronic Systems IEEE Trans. Aerosp. Electron. Syst. Aerospace and Electronic Systems, IEEE Transactions on. 59(3):2687-2701 Jun, 2023
Subject
Aerospace
Robotics and Control Systems
Signal Processing and Analysis
Communication, Networking and Broadcast Technologies
Delays
Global Positioning System
Aircraft
Monitoring
Receivers
Standards
Airports
Equatorial and low-latitude ionosphere
ground based augmentation systems
ionospheric decorrelation
ionospheric vertical total electron content (vTEC) gradients
Rede Brasileira de Monitoramento Contínuo (RBMC)
Language
ISSN
0018-9251
1557-9603
2371-9877
Abstract
Ground Based Augmentation Systems are designed to meet demanding requirements during airport approach and landing sections of aircraft routes. It computes corrected and smoothed differential corrections and other information. These messages are transmitted to aircraft, which may use the corrections to improve their position estimation. However, residual correction errors remain, due to ionospheric spatial and temporal gradients between Ground Based Augmentation System reference receivers and approaching aircraft. Large vertical ionospheric delay gradients detected during combinations of extreme geophysical environments indicate that there are problematic conditions for Ground Based Augmentation System operation over the Brazilian region. Motivated by the above conditions, data from Rede Brasileira de Monitoramento Contínuo, the Brazilian public network of dual-frequency global navigation satellite system receivers operated by Instituto Brasileiro de Geografia e Estatística were analyzed to estimate ionospheric vertical Total Electron Content (vTEC) gradients. The effects from different locations (represented by the dip latitude) and geophysical conditions (represented by solar activity, season, and local time) on variations of ionospheric vTEC gradients have been statistically quantified. The results from the present work provide information to more detailed performance assessments of Ground Based Augmentation System procedures under equatorial and low-latitude ionospheric regions, aimed at flexibly delimiting the conditions for feasible operation in such regions.