학술논문

Supervised Prediction of Aging-Related Genes From a Context-Specific Protein Interaction Subnetwork
Document Type
Periodical
Source
IEEE/ACM Transactions on Computational Biology and Bioinformatics IEEE/ACM Trans. Comput. Biol. and Bioinf. Computational Biology and Bioinformatics, IEEE/ACM Transactions on. 19(4):2484-2498 Aug, 2022
Subject
Bioengineering
Computing and Processing
Aging
Proteins
Feature extraction
Task analysis
Supervised learning
Gene expression
Cancer
Biological networks
dynamic network analysis
aging
node classification
Language
ISSN
1545-5963
1557-9964
2374-0043
Abstract
Human aging is linked to many prevalent diseases. The aging process is highly influenced by genetic factors. Hence, it is important to identify human aging-related genes. We focus on supervised prediction of such genes. Gene expression-based methods for this purpose study genes in isolation from each other. While protein-protein interaction (PPI) network-based methods for this purpose account for interactions between genes’ protein products, current PPI network data are context-unspecific, spanning different biological conditions. Instead, here, we focus on an aging-specific subnetwork of the entire PPI network, obtained by integrating aging-specific gene expression data and PPI network data. The potential of such data integration has been recognized but mostly in the context of cancer. So, we are the first to propose a supervised learning framework for predicting aging-related genes from an aging-specific PPI subnetwork. In a systematic and comprehensive evaluation, we find that in many of the evaluation tests: (i) using an aging-specific subnetwork indeed yields more accurate aging-related gene predictions than using the entire network, and (ii) predictive methods from our framework that have not previously been used for supervised prediction of aging-related genes outperform existing prominent methods for the same purpose. These results justify the need for our framework.