학술논문

Widely Tunable Single-Photon Frequency Conversion in a Nanomechanically Reconfigurable Si-Rich Nitride Waveguide
Document Type
Periodical
Source
Journal of Lightwave Technology J. Lightwave Technol. Lightwave Technology, Journal of. 40(23):7640-7647 Dec, 2022
Subject
Communication, Networking and Broadcast Technologies
Photonics and Electrooptics
Photonics
Optical waveguides
Quantum dots
Telecommunications
Optical frequency conversion
Laser excitation
Optical device fabrication
Four-wave mixing Bragg scattering
frequency conversion
quantum dot
single-photon source
silicon-rich nitride
tunable nanomechanical structure
Language
ISSN
0733-8724
1558-2213
Abstract
An on-demand single-photon source based on self-assembled semiconductor quantum dots (QDs) is a key building block for quantum communication and quantum information processing. To scale up, a challenge lies in frequency converting the emitted photons to the telecom wavelengths and eliminating the wavelength difference between multiple QDs. In this paper, we propose a novel nanomechanical silicon-rich nitride waveguide device, which can be reconfigured to realize efficient frequency conversion from the emission wavelength band of InAs/GaAs quantum dots at 900$\sim$950 nm to the telecom C-band around 1550 nm, by exploiting the Bragg scattering process in nonlinear four-wave mixing. Numerical results show that an optimal conversion efficiency over 99% and a signal-to-noise ratio up to 27 dB can be achieved when the waveguide loss is negligible, and the efficiency only reduces to 78% when a realistic loss of 1 dB/cm is considered. We conduct a detailed study on the unwanted noise processes, and provide design guidelines to improve the conversion efficiency and suppress the noises, e.g., by optimizing the power and wavelength of the pump laser.