학술논문

CherryPicker: Semantic Skeletonization and Topological Reconstruction of Cherry Trees
Document Type
Conference
Source
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) CVPRW Computer Vision and Pattern Recognition Workshops (CVPRW), 2023 IEEE/CVF Conference on. :6244-6253 Jun, 2023
Subject
Computing and Processing
Engineering Profession
Point cloud compression
Computer vision
Three-dimensional displays
Semantic segmentation
Conferences
Semantics
Pipelines
Language
ISSN
2160-7516
Abstract
In plant phenotyping, accurate trait extraction from 3D point clouds of trees is still an open problem. For automatic modeling and trait extraction of tree organs such as blossoms and fruits, the semantically segmented point cloud of a tree and the tree skeleton are necessary. Therefore, we present CherryPicker, an automatic pipeline that reconstructs photo-metric point clouds of trees, performs semantic segmentation and extracts their topological structure in form of a skeleton. Our system combines several state-of-the-art algorithms to enable automatic processing for further usage in 3D-plant phenotyping applications. Within this pipeline, we present a method to automatically estimate the scale factor of a monocular reconstruction to overcome scale ambiguity and obtain metrically correct point clouds. Furthermore, we propose a semantic skeletonization algorithm build up on Laplacian-based contraction. We also show by weighting different tree organs semantically, our approach can effectively remove artifacts induced by occlusion and structural size variations. CherryPicker obtains high-quality topology reconstructions of cherry trees with precise details.