학술논문

DAS Transducer for Enhanced Acoustic Sensitivity
Document Type
Periodical
Source
IEEE Sensors Letters IEEE Sens. Lett. Sensors Letters, IEEE. 7(9):1-4 Sep, 2023
Subject
Components, Circuits, Devices and Systems
Robotics and Control Systems
Communication, Networking and Broadcast Technologies
Signal Processing and Analysis
Sensors
Optical fiber sensors
Optical fibers
Acoustics
Fiber optics
Microphones
Optical fiber amplifiers
Sensor integration
distributed optical fiber sensors
acoustic
distributed acoustic sensing (DAS)
microphone
Language
ISSN
2475-1472
Abstract
This letter presents the development and evaluation of a diaphragm-based quasi-distributed optical fiber acoustic transducer. Traditional microphones face limitations in precise source localization, long-range monitoring, and performance in challenging environments. The proposed sensor overcomes these limitations by utilizing distributed acoustic sensing (DAS). The sensor design involves concentric positioning of optical fiber windings on the diaphragm, enabling the transduction of acoustic pressure into optical signals. Coherent heterodyne detection measures the resulting phase changes in the backscattered signal, providing accurate and precise acoustic detection. Experimental evaluations demonstrate the sensor's performance, showcasing its quasi-distributed nature, signal amplification with 28.8 dB, linear response to applied power, and response characteristics across a wide frequency range. This research contributes to advancing acoustic sensing technologies, offering improved source localization, long-range monitoring, and reliability in challenging environments. The promising results obtained open avenues for further developments and applications in diverse fields.