학술논문

Galileo Hand: An Anthropomorphic and Affordable Upper-Limb Prosthesis
Document Type
Periodical
Source
IEEE Access Access, IEEE. 8:81365-81377 2020
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Electromyography
Prosthetic hand
Muscles
Thumb
Manufacturing
Actuators
three-dimensional printing
electromyography
user-prosthesis interface
Language
ISSN
2169-3536
Abstract
The strict development processes of commercial upper-limb prostheses and the complexity of research projects required for their development makes them expensive for end users, both in terms of acquisition and maintenance. Moreover, many of them possess complex ways to operate and interact with the subjects, influencing patients to not favor these devices and shed them from their activities of daily living. The advent of 3D printers allows for distributed open-source research projects that follow new design principles; these consider simplicity without neglecting performance in terms of grasping capabilities, power consumption and controllability. In this work, a simple, yet functional design based on 3D printing is proposed, with the aim to reduce costs and manufacturing time. The operation process consists in interpreting the user intent with electromyography electrodes, while providing visual feedback through a $\mu $ LCD screen. Its modular, parametric and self-contained design is intended to aid people with different transradial amputation levels, despite of the socket’s constitution. This approach allows for easy updates of the system and demands a low cognitive effort from the user, satisfying a trade-off between functionality and low cost. It also grants an easy customization of the amount and selection of available actions, as well as the sensors used for gathering the user intent, permitting alterations to fit the patients’ unique needs. Furthermore, experimental results showed an apt mechanical performance when interacting with everyday life objects, in addition to a highly accurate and responsive controller; this also applies for the user-prosthesis interface.