학술논문

A Deep-Learning Model for Estimating the Impact of Social Events on Traffic Demand on a Cell Basis
Document Type
Periodical
Source
IEEE Access Access, IEEE. 9:71673-71686 2021
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Computer architecture
Microprocessors
Predictive models
Forecasting
Time series analysis
Neurons
Neural networks
Deep-learning
multi task
social events
time series
cellular network
traffic forecast
context
Language
ISSN
2169-3536
Abstract
In cellular networks, a deep knowledge of the traffic demand pattern in each cell is essential in network planning and optimization tasks. However, a precise forecast of the traffic time series per cell is hard to achieve, due to the noise originated by abnormal local events. In particular, mass social events (e.g., concerts, conventions, sport events…) have a strong impact on traffic demand. In this paper, a data-driven model to estimate the impact of local events on cellular traffic is presented. The model is trained with a large dataset of geotagged social events taken from public event databases and hourly traffic data from a live Long Term Evolution (LTE) network. The resulting model is combined with a traffic forecast module based on a multi-task deep-learning architecture to predict the hourly traffic series with scheduled mass events. Model assessment is performed over a real dataset created with geolocated social event information collected from public event directories and hourly cell traffic measurements during two months in a LTE network. Results show that the addition of the proposed model significantly improves traffic forecasts in the presence of massive events.