학술논문

Velocity- and Error-Aware Switching of Motion Prediction Models for Cloud Virtual Reality
Document Type
Periodical
Source
IEEE Access Access, IEEE. 11:92676-92692 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Predictive models
Solid modeling
Switches
Cloud computing
Headphones
Magnetic heads
Virtual reality
Machine learning
Ensemble learning
Motion control
VR
cloud VR
motion prediction
machine learning
ensemble
Language
ISSN
2169-3536
Abstract
Offloading virtual reality (VR) computations to a cloud computing entity can enable support for VR services on low-end user devices but may result in increased latency, which will lead to mismatch between the user’s viewport and the received VR image, thus inducing motion sickness. Predicting future motion and rendering future images accordingly is a promising solution to the latency problem. In this paper, we develop velocity- and error-aware model switching schemes applicable to a wide range of existing motion prediction models. First, we consider the chattering problem of machine learning (ML)-based prediction models and the relationship between the velocity and the prediction error gap between an ML model and the case of no prediction (NOP). Accordingly, we propose a velocity-aware switching (VAS) scheme that combines the outputs from the ML model and the NOP case via a weight determined by the head motion velocity. Next, we develop an ensemble method combining a set of outputs from VAS and other models, called error-aware switching (EAS). EAS switches between model outputs based on the error statistics of those outputs under the parallel execution of multiple models, including VAS models. For EAS, schemes for both hard switching and soft integration of the model outputs are proposed. We evaluate the proposed schemes based on real VR motion traces for diverse ML-based prediction models.