학술논문

An 8T Differential SRAM With Improved Noise Margin for Bit-Interleaving in 65 nm CMOS
Document Type
Periodical
Source
IEEE Transactions on Circuits and Systems I: Regular Papers IEEE Trans. Circuits Syst. I Circuits and Systems I: Regular Papers, IEEE Transactions on. 58(6):1252-1263 Jun, 2011
Subject
Components, Circuits, Devices and Systems
Computer architecture
Random access memory
Microprocessors
Noise
Transistors
Circuit stability
Error correction codes
Low power SRAM
low voltage SRAM
multiple port SRAM
static-noise-margin-free
Language
ISSN
1549-8328
1558-0806
Abstract
Lowering power consumption and increasing noise margin have become two central topics in every state of the art SRAM design. Due to parameter fluctuations in scaled technologies, stable operation is critical to obtain high yield low-voltage, low-power SRAM. Recent published works in literature have shown that the conventional 6T SRAM suffers a severe stability degradation due to access disturbances at low-power mode. Thus, several 8T and 10T cell designs have been reported, improving the cell stability. However, they either employ single-ended read port or require too large area. In this paper, we use a fully differential 8T SRAM that allows efficient bit-interleaving to achieve soft-error tolerance with conventional Error Correcting Code (ECC). It also consumes less power when compared to the conventional 6T design. A column-based dynamic supply voltage scheme is utilized to improve both the read noise margin and the write-ability. To verify the technique, a 128 $\times$ 64-bit of the proposed SRAM has been implemented in a standard 65 nm/1 V CMOS process. Simulation results reaffirmed that the proposed design has 2$\times$ higher noise margin and consumes 54% less power when compared to the conventional 6T design.