학술논문

Design Automation for a Fully Printed P(VDF-TrFE) Transducer
Document Type
Conference
Source
2022 IEEE International Symposium on Applications of Ferroelectrics (ISAF) Applications of Ferroelectrics (ISAF), 2022 IEEE International Symposium on. :1-4 Jun, 2022
Subject
Engineering Profession
Fields, Waves and Electromagnetics
Ultrasonic transducers
Transducers
Codes
Ultrasonic imaging
Resonant frequency
Transmission line theory
Impedance
Rapid Prototyping
Piezoelectric
Screen Printing
Inkjet Printing
Mason Model
Transmission Line Theory
Acoustic
Electric
Impedance.
Language
ISSN
2375-0448
Abstract
Ultrasound transducers can be modelled from scratch in software. Simulations employ these models to investigate the influences of materials and shapes of transducer structures on the resonance behaviour. However, there is a lack of publicly available code implementations for such models. In addition, printed transducers place special demands on the design. For example, printing processes always require substrate materials that can affect resonances. To support rapid prototyping, we provided an equivalent circuit model based on the model suggested by Mason. We employed transmission line theory to account for impedance loads from auxiliary structures (e.g. electrodes or substrate). We evaluated our model on 6 printed transducer samples and found mean differences in resonant frequencies of 3.63±2.5MHz. Moreover, we demonstrated the usage of this model in the design process of printed transducers. We made all our code available as open-source software via: https://github.com/luuleitner/xMason.