학술논문

A Multiobjective Approach for the Optimal Placement of Protection and Control Devices in Distribution Networks With Microgrids
Document Type
Periodical
Source
IEEE Access Access, IEEE. 10:41776-41788 2022
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Circuit faults
Fuses
Microgrids
Uncertainty
Renewable energy sources
Distribution networks
Reliability
Distribution systems
microgrids
protection system planning
non-dominated sorting genetic algorithm
compromise programming
Language
ISSN
2169-3536
Abstract
Protection and control systems represent an essential part of distribution networks by ensuring the physical integrity of components and by improving system reliability. Protection devices isolate a portion of the network affected by a fault, while control devices reduce the number of de-energized loads by transferring loads to neighboring feeders. The integration of distributed generation has the potential to enhance the continuity of energy services through islanding operation during outage conditions. In this context, this study presents a multi-objective optimization approach for sizing and allocating protection and control devices in distribution networks with microgrids supplied by renewable energy sources. Reclosers, fuses, remote-controlled switches, and directional relays are considered in the formulation. Demand and generation uncertainties define the islanding operation and the load transfer possibilities. A non-dominated sorting genetic algorithm is applied in the solution of the allocation problem considering two conflicting objectives: cost of energy not supplied and equipment cost. The compromise programming is then performed to achieve the best solution from the Pareto front. The results show interesting setups for the protection system and viability of islanding operation.