학술논문

Current-Voltage Modeling of DRAM Cell Transistor Using Genetic Algorithm and Deep Learning
Document Type
Periodical
Source
IEEE Access Access, IEEE. 12:23881-23886 2024
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Integrated circuit modeling
Genetic algorithms
Transistors
Optimization
Statistics
Sociology
Random access memory
Deep learning
Insulated gate bipolar transistors
BSIM-CMG
deep learning
genetic algorithm
I-V modeling
compact modeling
BCAT
DRAM cell transistor
HCD
Language
ISSN
2169-3536
Abstract
Accurate current-voltage (I-V) modeling based on the Berkeley short-channel insulated-gate field-effect transistor model (BSIM) is pivotal for integrated circuit simulation. However, the current BSIM model does not support a buried-channel-array transistor (BCAT), which is the structure of the state-of-the-art commercial dynamic random access memory (DRAM) cell transistor. In this work, we propose an intelligent I-V modeling technique that combines genetic algorithm (GA) and deep learning (DL). This hybrid technique facilitates both optimization of BSIM parameter and accurate I-V modeling, even for devices not originally supported by BSIM. Additionally, we extended application of the DL to model one of the principal degradation mechanisms of transistor, the hot-carrier degradation (HCD). The successful modeling results of I-V characteristic and device degradation demonstrated that devices not supported by BSIM can be accurately modeled for integrated circuit simulations.