학술논문

A New Workflow for Image-Guided Intraoperative Electron Radiotherapy Using Projection-Based Pose Tracking
Document Type
Periodical
Source
IEEE Access Access, IEEE. 8:137501-137516 2020
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Applicators
Surgery
Computed tomography
Three-dimensional displays
Two dimensional displays
Planning
Robustness
3D-2D registration
IGIOERT
image guided intra operative electron radiotherapy
IOERT
IORT
Language
ISSN
2169-3536
Abstract
A new workflow is proposed to update the intraoperative electron radiotherapy (IOERT) planning refreshing the position and orientation (pose) of a virtual applicator with respect to the preoperative computed tomography (CT) with the actual pose during surgery. The workflow proposed relies on a robust registration of the preoperative CT and intraoperative projection radiographs acquired with a C-arm system. The workflow initially performs a geometric calibration of the C-arm using fiducials placed on the applicator. In the next step, a point-based 2D–3D registration based on fiducials positioned on the patient’s skin is performed, followed by an intensity-based registration that refines the point-based registration result. The performance of the workflow has been evaluated using a realistic physical phantom consisting of a pig lower limb and its corresponding CT and 7 C-arm projections at different poses. The accuracy has been measured with respect to the applicator origin and axis before and after the registration refinement process. A feasibility study with human data is also included. Error analysis revealed angular accuracy of 0.9 ± 0.7 degrees and translational accuracy of 1.9 ± 1 mm. Our experiments demonstrated that the proposed workflow can achieve subdegree angular accuracy in locating the applicator with respect to the preoperative CT to update and supervise the IOERT planning right before radiation delivery. The proposed workflow could be easily implementable in a routine, corresponding to a significant improvement in quality assurance during IOERT procedures.