학술논문

Depth and All-in-Focus Image Estimation in Synthetic Aperture Integral Imaging Under Partial Occlusions
Document Type
Periodical
Source
IEEE Access Access, IEEE. 7:1052-1067 2019
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Cameras
Three-dimensional displays
Estimation
Image reconstruction
Apertures
Sensors
Synthetic aperture integral imaging
depth map estimation
all-in-focus image
partial occlusions
3D image processing
Language
ISSN
2169-3536
Abstract
A common assumption in the integral imaging reconstruction is that a pixel will be photo-consistent if all viewpoints observed by the different cameras converge at a single point when focusing at the proper depth. However, the presence of occlusions between objects in the scene prevents this from being fulfilled. In this paper, a novel depth and all-in focus image estimation method is presented, based on a photo-consistency measure that uses the median criterion in relation to the elemental images. The interest of this approach is to find a solution to detect which camera correctly sees the partially occluded object at a certain depth and allows for a precise solution to the object depth. In addition, a robust solution is proposed to detect the boundary limits between partially occluded objects, which are subsequently used during the regularization depth estimation process. The experimental results show that the proposed method outperforms other state-of-the-art depth estimation methods in a synthetic aperture integral imaging framework.