학술논문

Multi-Modal Side Channel Data Driven Golden-Free Detection of Software and Firmware Trojans
Document Type
Periodical
Source
IEEE Transactions on Dependable and Secure Computing IEEE Trans. Dependable and Secure Comput. Dependable and Secure Computing, IEEE Transactions on. 20(6):4664-4677 Jan, 2023
Subject
Computing and Processing
Trojan horses
Data models
Temperature measurement
Embedded systems
Frequency measurement
Anomaly detection
Integrated circuit modeling
embedded system
golden-free
machine learning
trojan detection
Language
ISSN
1545-5971
1941-0018
2160-9209
Abstract
This study explores data-driven detection of firmware/software Trojans in embedded systems without golden models. We consider embedded systems such as single board computers and industrial controllers. While prior literature considers side channel based anomaly detection, this study addresses the following central question: is anomaly detection feasible when using low-fidelity simulated data without using data from a known-good (golden) system? To study this question, we use data from a simulator-based proxy as a stand-in for unavailable golden data from a known-good system. Using data generated from the simulator, one-class classifier machine learning models are applied to detect discrepancies against expected side channel signal patterns and their inter-relationships. Side channels fused for Trojan detection include multi-modal side channel measurement data (such as Hardware Performance Counters, processor load, temperature, and power consumption). Additionally, fuzzing is introduced to increase detectability of Trojans. To experimentally evaluate the approach, we generate low-fidelity data using a simulator implemented with a component-based model and an information bottleneck based on Gaussian stochastic models. We consider example Trojans and show that fuzzing-aided golden-free Trojan detection is feasible using simulated data as a baseline.