학술논문

Reduced Heat Generation During Magnetic Stimulation of Rat Sciatic Nerve Using Current Waveform Truncation
Document Type
Periodical
Source
IEEE Transactions on Neural Systems and Rehabilitation Engineering IEEE Trans. Neural Syst. Rehabil. Eng. Neural Systems and Rehabilitation Engineering, IEEE Transactions on. 27(5):937-946 May, 2019
Subject
Bioengineering
Computing and Processing
Robotics and Control Systems
Signal Processing and Analysis
Communication, Networking and Broadcast Technologies
Magnetic stimulation
Insulated gate bipolar transistors
Capacitors
Discharges (electric)
Heating systems
Electrical stimulation
Wires
Current truncation
energy requirements
magnetic stimulation
neuromuscular response
Language
ISSN
1534-4320
1558-0210
Abstract
Current truncating circuit designs used in some controllable pulse width transcranial magnetic stimulation systems can be adapted for use with the peripheral nervous system. Such a scaled-down stimulator produces neuromuscular activation using less stimulus energy than described in previous reports of sciatic nerve stimulation. To evaluate the energy reductions possible with current truncation, we performed six in vivo experiments in rats where the magnetic stimulating coil abutted the sciatic nerve. We used electromyographic data to quantify neuromuscular response, with a criterion level of 20%-of-maximum to indicate a useful level of neuromuscular activation. The energy required to evoke this criterion response from muscles innervated by the sciatic nerve was reduced by approximately 34% from 10.7J with a stimulus waveform lasting 300 ${\mu }\text{s}$ to 7.1J with a waveform lasting 50 ${\mu }\text{s}$ . In water, the 300 ${\mu }\text{s}$ pulse heated the coil by 0.30°C whereas the 50 ${\mu }\text{s}$ pulse heated the coil by 0.15°C. Truncated-waveform magnetic stimulation systems can be used in basic research and clinical applications not requiring rapidly pulsed stimuli. An example of such a clinical application is left vagus nerve stimulation, a treatment that is reported to reduce epileptic partial-onset seizures.