학술논문

Lattice Resonances in Optical Metasurfaces With Gain and Loss
Document Type
Periodical
Source
Proceedings of the IEEE Proc. IEEE Proceedings of the IEEE. 108(5):795-818 May, 2020
Subject
General Topics for Engineers
Engineering Profession
Aerospace
Bioengineering
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Fields, Waves and Electromagnetics
Geoscience
Nuclear Engineering
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Power, Energy and Industry Applications
Communication, Networking and Broadcast Technologies
Photonics and Electrooptics
Lattices
Plasmons
Optical scattering
Optical polarization
Photonics
Nanophotonics
Exceptional points (EPs)
parity-time (PT) symmetry
plasmonic nanoparticle arrays
non-Hermitian photonics
Language
ISSN
0018-9219
1558-2256
Abstract
Periodic lattices of strongly scattering objects coupled to active media are of central importance in applied nanophotonics, serving as light-emitting metasurfaces of tailored emission properties and promising an attractive platform for testing novel physical concepts and realization of unprecedented light-shaping functions. We provide an overview of the semianalytical Green function method with Ewald lattice summation applied to the investigation of surface lattice resonances in periodic arrays of resonant nanoscatterers with gain and loss. This theory is meant as a minimal model for plasmonic lattices and metasurfaces with gain: minimal in complexity, yet sufficiently rich to be a self-consistent, fully retarded multiple scattering model. It enables to include the electromagnetic interactions between electric and/or magnetic point dipoles of arbitrary orientation and arrangement, taking into account retardation and tensorial nature of these interactions and including radiation damping. It gives access to the far-field observables (reflection/transmission), as well as to the photonic band structure of guided modes. At the same time, it does not violate the optical theorem, as opposed to the commonly used tight-binding or quasi-static models. After extending the lattice Green function formalism to include gain and loss in the unit cell, we demonstrate the effects of parity-time (PT) symmetry breaking in active-lossy plasmonic arrays: the emergence of exceptional points, nontrivial topology of photonic bands, diverging effective unit-cell polarizability, and spin polarization in the PT-broken phase.