학술논문

Prognostics for Electromagnetic Relays Using Deep Learning
Document Type
Periodical
Source
IEEE Access Access, IEEE. 10:4861-4895 2022
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Engineered Materials, Dielectrics and Plasmas
Engineering Profession
Fields, Waves and Electromagnetics
General Topics for Engineers
Geoscience
Nuclear Engineering
Photonics and Electrooptics
Power, Energy and Industry Applications
Robotics and Control Systems
Signal Processing and Analysis
Transportation
Relays
Estimation
Electromagnetics
Uncertainty
Switches
Reliability
Prognostics and health management
Electromagnetic relay
prognostics
prognostics and health management
predictive maintenance
remaining useful life
artificial intelligence
deep learning
temporal convolutional networks
Monte-Carlo dropout
Language
ISSN
2169-3536
Abstract
Electromagnetic Relays (Electromagnetic Relay (EMR)s) are omnipresent in electrical systems, ranging from mass-produced consumer products to highly specialised, safety-critical industrial systems. Our detailed literature review focused on EMR reliability highlighting the methods used to estimate the State of Health or the Remaining Useful Life emphasises the limited analysis and understanding of expressive EMR degradation indicators, as well as accessibility and use of EMR life cycle data sets. Prioritising these open challenges, a deep learning pipeline is presented in a prognostic context termed Electromagnetic Relay Useful Actuation Pipeline (EMRUA). Leveraging the attributes of causal convolution, a Temporal Convolutional Network (TCN) based architecture integrates an arbitrary long sequence of multiple features to produce a remaining useful switching actuations forecast. These features are extracted from raw, high volume life cycle data sets, namely EMR switching data (Contact-Voltage, Contact-Current). Monte-Carlo Dropout is utilised to estimate uncertainty during inference. The TCN hyperparameter space, as well as various methods to select and analyse long sequences of multivariate time series data are investigated. Subsequently, our results demonstrate improvements using the developed statistical feature-set over traditional, time-based features, commonly found in literature. EMRUA achieves an average forecasting mean absolute percentage error of ±12 % over the course of the entire EMR life.