학술논문

Advanced Persistent Threat Detection Using Data Provenance and Metric Learning
Document Type
Periodical
Source
IEEE Transactions on Dependable and Secure Computing IEEE Trans. Dependable and Secure Comput. Dependable and Secure Computing, IEEE Transactions on. 20(5):3957-3969 Jan, 2023
Subject
Computing and Processing
Measurement
Trojan horses
Real-time systems
Feature extraction
Databases
Calculators
Training data
Advanced persistent threat
data provenance
metric learning
Language
ISSN
1545-5971
1941-0018
2160-9209
Abstract
Advanced persistent threats (APT) have increased in recent times as a result of the rise in interest by nation-states and sophisticated corporations to obtain high-profile information. Typically, APT attacks are more challenging to detect since they leverage zero-day attacks and common benign tools. Furthermore, these attack campaigns are often prolonged to evade detection. We leverage an approach that uses a provenance graph to obtain execution traces of host nodes in order to detect anomalous behavior. By using the provenance graph, we extract features that are then used to train an online adaptive metric learning. Online metric learning is a deep learning method that learns a function to minimize the separation between similar classes and maximizes the separation between dis- similar instances. We compare our approach with baseline models and we show our method outperforms the baseline models by increasing detection accuracy on average by 11.3% and increases True positive rate (TPR) on average by 18.3%. We also show that our method outperforms several state-of-the-art models performances in comprehensive attack datasets in both binary and multi-class settings.