학술논문

Rudin-Shapiro-Like Sequences With Maximum Asymptotic Merit Factor
Document Type
Periodical
Source
IEEE Transactions on Information Theory IEEE Trans. Inform. Theory Information Theory, IEEE Transactions on. 66(12):7728-7738 Dec, 2020
Subject
Communication, Networking and Broadcast Technologies
Signal Processing and Analysis
Correlation
Limiting
Electronic mail
Lenses
Indexes
Urban areas
Autocorrelation
Golay complementary pair
merit factor
Rudin-Shapiro sequence
Language
ISSN
0018-9448
1557-9654
Abstract
Borwein and Mossinghoff investigated the Rudin-Shapiro-like sequences, which are infinite families of binary sequences, usually represented as polynomials. Each family of Rudin-Shapiro-like sequences is obtained from a starting sequence (which we call the seed) by a recursive construction that doubles the length of the sequence at each step, and many sequences produced in this manner have exceptionally low aperiodic autocorrelation. Borwein and Mossinghoff showed that the asymptotic autocorrelation merit factor for any such family is at most 3, and found the seeds of length 40 or less that produce the maximum asymptotic merit factor of 3. The definition of Rudin-Shapiro-like sequences was generalized by Katz, Lee, and Trunov to include sequences with arbitrary complex coefficients, among which are families of low autocorrelation polyphase sequences. Katz, Lee, and Trunov proved that the maximum asymptotic merit factor is also 3 for this larger class. Here we show that a family of such Rudin-Shapiro-like sequences achieves asymptotic merit factor 3 if and only if the seed is either of length 1 or is the interleaving of a pair of Golay complementary sequences. For small seed lengths where this is not possible, the optimal seeds are interleavings of pairs that are as close as possible to being complementary pairs, and the idea of an almost-complementary pair makes sense of remarkable patterns in previously unexplained data on optimal seeds for binary Rudin-Shapiro-like sequences.