학술논문

Shape-biased CNNs are Not Always Superior in Out-of-Distribution Robustness
Document Type
Conference
Source
2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) WACV Applications of Computer Vision (WACV), 2024 IEEE/CVF Winter Conference on. :2315-2324 Jan, 2024
Subject
Computing and Processing
Deep learning
Adaptation models
Computer vision
Head
Shape
Design methodology
Stars
Algorithms
Machine learning architectures
formulations
and algorithms
Language
ISSN
2642-9381
Abstract
In recent years, Out-of-Distribution (o.o.d) Robustness has garnered increasing attention in Deep Learning, and shape-biased Convolutional Neural Networks (CNNs) are believed to exhibit higher robustness, attributed to the inherent shape-based decision rule of human cognition. In this work, we delve deeper into the intricate relationship between shape/texture information and o.o.d robustness by leveraging a carefully curated "Category-Balanced ImageNet" dataset. We find that shape information is not always superior in distinguishing distinct categories and shape-biased model is not always superior across various o.o.d scenarios. Motivated by these insightful findings, we design a novel method named Shape-Texture Adaptive Recombination (STAR) to achieve higher o.o.d robustness. A category-balanced dataset is firstly used to pretrain a debiased backbone and three specialized heads, each adept at robustly extracting shape, texture, and debiased features. Subsequently, an instance-adaptive recombination head is trained to adaptively adjust the contributions of these distinctive features for each given instance. Through comprehensive experiments, our proposed method achieves state-of-the-art o.o.d robustness across various scenarios such as image corruptions, adversarial attacks, style shifts, and dataset shifts, demonstrating its effectiveness.