학술논문

Sparse Stochastic Processes and Discretization of Linear Inverse Problems
Document Type
Periodical
Source
IEEE Transactions on Image Processing IEEE Trans. on Image Process. Image Processing, IEEE Transactions on. 22(7):2699-2710 Jul, 2013
Subject
Signal Processing and Analysis
Communication, Networking and Broadcast Technologies
Computing and Processing
Image reconstruction
Stochastic processes
Technological innovation
Inverse problems
Noise measurement
Optimization
Biological system modeling
Innovation models
maximum a posteriori (MAP) estimation
nonconvex optimization
non-Gaussian statistics
sparse stochastic processes
sparsity-promoting regularization
Language
ISSN
1057-7149
1941-0042
Abstract
We present a novel statistically-based discretization paradigm and derive a class of maximum a posteriori (MAP) estimators for solving ill-conditioned linear inverse problems. We are guided by the theory of sparse stochastic processes, which specifies continuous-domain signals as solutions of linear stochastic differential equations. Accordingly, we show that the class of admissible priors for the discretized version of the signal is confined to the family of infinitely divisible distributions. Our estimators not only cover the well-studied methods of Tikhonov and $\ell_{1}$-type regularizations as particular cases, but also open the door to a broader class of sparsity-promoting regularization schemes that are typically nonconvex. We provide an algorithm that handles the corresponding nonconvex problems and illustrate the use of our formalism by applying it to deconvolution, magnetic resonance imaging, and X-ray tomographic reconstruction problems. Finally, we compare the performance of estimators associated with models of increasing sparsity.