학술논문

Coated Spintronic Emitters for Improved THz Time-domain Spectroscopy
Document Type
Conference
Source
2023 48th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2023 48th International Conference on. :1-2 Sep, 2023
Subject
Aerospace
Bioengineering
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Engineered Materials, Dielectrics and Plasmas
Fields, Waves and Electromagnetics
Photonics and Electrooptics
Signal Processing and Analysis
Silicon compounds
Spectroscopy
Metals
Laser excitation
Broadband communication
Laser pulses
Electric fields
Language
ISSN
2162-2035
Abstract
Spintronic metal thin films excited by femtosecond laser pulses have proven to be excellent sources of broadband THz radiation, making these emitters increasingly popular for THz spectroscopy. Unfortunately, a significant proportion of the incident excitation laser is transmitted through the spintronic emitters, which can inadvertently photoexcite samples or cause damage to elements of the spectrometer. Here, we demonstrate a high-reflectivity coating made from alternating layers of SiO 2 and Ta$_{{2}} {\mathrm{O}} _{{5}}$ that effectively blocks the incident excitation pulse and enhances the peak THz electric field by roughly 35%. We further improve the emitter performance with an anti-reflective coating. We find spintronic emitters with both coatings exhibit over 40% improvement in peak THz electric field compared to an uncoated emitter and transmit less than 0.1% of the excitation laser pulse.