학술논문

Simulating 0.4–2.5 GHz Brightness Temperatures of the Ross Ice Shelf, Antarctica
Document Type
Periodical
Source
IEEE Geoscience and Remote Sensing Letters IEEE Geosci. Remote Sensing Lett. Geoscience and Remote Sensing Letters, IEEE. 21:1-5 2024
Subject
Geoscience
Power, Energy and Industry Applications
Communication, Networking and Broadcast Technologies
Components, Circuits, Devices and Systems
Computing and Processing
Signal Processing and Analysis
Ice shelf
Ice
Ocean temperature
Microwave radiometry
Temperature measurement
Sea measurements
Microwave integrated circuits
Antarctica
ice shelf
low frequency
microwave radiometry
modeling
Language
ISSN
1545-598X
1558-0571
Abstract
Ice shelves are important parts of the cryosphere that influence ice sheet dynamics and mass loss. The internal temperatures of ice shelves are currently known only from a few borehole sites or from glaciological models. Microwave radiometry in the 0.4–2.5 GHz range is capable of receiving thermal emissions from deep within an ice shelf and thereby providing information on internal temperatures. This letter reports modeling studies of the brightness temperature of the Ross Ice Shelf (RIS) from 0.4 to 2.5 GHz that provide insight into the potential of microwave radiometers for measuring ice shelf internal properties.