학술논문

Control of Magnetic Microrobot Teams for Temporal Micromanipulation Tasks
Document Type
Periodical
Source
IEEE Transactions on Robotics IEEE Trans. Robot. Robotics, IEEE Transactions on. 34(6):1472-1489 Dec, 2018
Subject
Robotics and Control Systems
Computing and Processing
Components, Circuits, Devices and Systems
Task analysis
Mobile robots
Robot kinematics
Micromagnetics
Optimal control
Automata
Nanoscale devices
Logic design
Kinematics
Micro/nanorobots
optimal control synthesis
path planning for multiple mobile robot systems
temporal logic planning
Language
ISSN
1552-3098
1941-0468
Abstract
In this paper, we present a control framework that allows magnetic microrobot teams to accomplish complex micromanipulation tasks captured by global linear temporal logic (LTL) formulas. To address this problem, we propose an optimal control synthesis method that constructs discrete plans for the robots that satisfy both the assigned tasks as well as proximity constraints between the robots due to the physics of the problem. The proposed algorithm relies on an existing optimal control synthesis approach combined with a novel sampling-based technique to reduce the state-space of the product automaton that is associated with the LTL specifications. The synthesized discrete plans are executed by the microrobots independently using local magnetic fields. Simulation studies show that the proposed algorithm can address large-scale planning problems that cannot be solved using existing optimal control synthesis approaches. Moreover, we present experimental results that also illustrate the potential of the method in practice. To the best of our knowledge, this is the first control framework that allows independent control of teams of magnetic microrobots for temporal micromanipulation tasks.